TigerData logo
TigerData logo
  • Product

    Tiger Cloud

    Robust elastic cloud platform for startups and enterprises

    Agentic Postgres

    Postgres for Agents

    TimescaleDB

    Postgres for time-series, real-time analytics and events

  • Docs
  • Pricing

    Pricing

    Enterprise Tier

  • Developer Hub

    Changelog

    Benchmarks

    Blog

    Community

    Customer Stories

    Events

    Support

    Integrations

    Launch Hub

  • Company

    Contact us

    About

    Timescale

    Partners

    Security

    Careers

Log InTry for free
Home
AWS Time-Series Database: Understanding Your OptionsStationary Time-Series AnalysisThe Best Time-Series Databases ComparedTime-Series Analysis and Forecasting With Python Alternatives to TimescaleWhat Are Open-Source Time-Series Databases—Understanding Your OptionsWhy Consider Using PostgreSQL for Time-Series Data?Time-Series Analysis in RWhat Is Temporal Data?What Is a Time Series and How Is It Used?Is Your Data Time Series? Data Types Supported by PostgreSQL and TimescaleUnderstanding Database Workloads: Variable, Bursty, and Uniform PatternsHow to Work With Time Series in Python?Tools for Working With Time-Series Analysis in PythonGuide to Time-Series Analysis in PythonUnderstanding Autoregressive Time-Series ModelingCreating a Fast Time-Series Graph With Postgres Materialized Views
Understanding PostgreSQLOptimizing Your Database: A Deep Dive into PostgreSQL Data TypesUnderstanding FROM in PostgreSQL (With Examples)How to Address ‘Error: Could Not Resize Shared Memory Segment’ How to Install PostgreSQL on MacOSUnderstanding FILTER in PostgreSQL (With Examples)Understanding GROUP BY in PostgreSQL (With Examples)PostgreSQL Join Type TheoryA Guide to PostgreSQL ViewsStructured vs. Semi-Structured vs. Unstructured Data in PostgreSQLUnderstanding Foreign Keys in PostgreSQLUnderstanding PostgreSQL User-Defined FunctionsUnderstanding PostgreSQL's COALESCE FunctionUnderstanding SQL Aggregate FunctionsUsing PostgreSQL UPDATE With JOINHow to Install PostgreSQL on Linux5 Common Connection Errors in PostgreSQL and How to Solve ThemUnderstanding HAVING in PostgreSQL (With Examples)How to Fix No Partition of Relation Found for Row in Postgres DatabasesHow to Fix Transaction ID Wraparound ExhaustionUnderstanding LIMIT in PostgreSQL (With Examples)Understanding PostgreSQL FunctionsUnderstanding ORDER BY in PostgreSQL (With Examples)Understanding WINDOW in PostgreSQL (With Examples)Understanding PostgreSQL WITHIN GROUPPostgreSQL Mathematical Functions: Enhancing Coding EfficiencyUnderstanding DISTINCT in PostgreSQL (With Examples)Using PostgreSQL String Functions for Improved Data AnalysisData Processing With PostgreSQL Window FunctionsPostgreSQL Joins : A SummaryUnderstanding OFFSET in PostgreSQL (With Examples)Understanding PostgreSQL Date and Time FunctionsWhat Is Data Compression and How Does It Work?What Is Data Transformation, and Why Is It Important?Understanding the Postgres string_agg FunctionWhat Is a PostgreSQL Left Join? And a Right Join?Understanding PostgreSQL SELECTSelf-Hosted or Cloud Database? A Countryside Reflection on Infrastructure ChoicesUnderstanding ACID Compliance Understanding percentile_cont() and percentile_disc() in PostgreSQLUnderstanding PostgreSQL Conditional FunctionsUnderstanding PostgreSQL Array FunctionsWhat Characters Are Allowed in PostgreSQL Strings?Understanding WHERE in PostgreSQL (With Examples)What Is a PostgreSQL Full Outer Join?What Is a PostgreSQL Cross Join?What Is a PostgreSQL Inner Join?Data Partitioning: What It Is and Why It MattersStrategies for Improving Postgres JOIN PerformanceUnderstanding the Postgres extract() FunctionUnderstanding the rank() and dense_rank() Functions in PostgreSQL
Guide to PostgreSQL PerformanceHow to Reduce Bloat in Large PostgreSQL TablesDesigning Your Database Schema: Wide vs. Narrow Postgres TablesBest Practices for Time-Series Data Modeling: Single or Multiple Partitioned Table(s) a.k.a. Hypertables Best Practices for (Time-)Series Metadata Tables A Guide to Data Analysis on PostgreSQLA Guide to Scaling PostgreSQLGuide to PostgreSQL SecurityHandling Large Objects in PostgresHow to Query JSON Metadata in PostgreSQLHow to Query JSONB in PostgreSQLHow to Use PostgreSQL for Data TransformationOptimizing Array Queries With GIN Indexes in PostgreSQLPg_partman vs. Hypertables for Postgres PartitioningPostgreSQL Performance Tuning: Designing and Implementing Your Database SchemaPostgreSQL Performance Tuning: Key ParametersPostgreSQL Performance Tuning: Optimizing Database IndexesDetermining the Optimal Postgres Partition SizeNavigating Growing PostgreSQL Tables With Partitioning (and More)Top PostgreSQL Drivers for PythonWhen to Consider Postgres PartitioningGuide to PostgreSQL Database OperationsUnderstanding PostgreSQL TablespacesWhat Is Audit Logging and How to Enable It in PostgreSQLGuide to Postgres Data ManagementHow to Index JSONB Columns in PostgreSQLHow to Monitor and Optimize PostgreSQL Index PerformanceSQL/JSON Data Model and JSON in SQL: A PostgreSQL PerspectiveA Guide to pg_restore (and pg_restore Example)PostgreSQL Performance Tuning: How to Size Your DatabaseAn Intro to Data Modeling on PostgreSQLExplaining PostgreSQL EXPLAINWhat Is a PostgreSQL Temporary View?A PostgreSQL Database Replication GuideHow to Compute Standard Deviation With PostgreSQLHow PostgreSQL Data Aggregation WorksBuilding a Scalable DatabaseRecursive Query in SQL: What It Is, and How to Write OneGuide to PostgreSQL Database DesignHow to Use Psycopg2: The PostgreSQL Adapter for Python
Best Practices for Scaling PostgreSQLHow to Design Your PostgreSQL Database: Two Schema ExamplesHow to Handle High-Cardinality Data in PostgreSQLHow to Store Video in PostgreSQL Using BYTEABest Practices for PostgreSQL Database OperationsHow to Manage Your Data With Data Retention PoliciesBest Practices for PostgreSQL AggregationBest Practices for Postgres Database ReplicationHow to Use a Common Table Expression (CTE) in SQLBest Practices for Postgres Data ManagementBest Practices for Postgres PerformanceBest Practices for Postgres SecurityBest Practices for PostgreSQL Data AnalysisTesting Postgres Ingest: INSERT vs. Batch INSERT vs. COPYHow to Use PostgreSQL for Data Normalization
PostgreSQL Extensions: amcheckPostgreSQL Extensions: Unlocking Multidimensional Points With Cube PostgreSQL Extensions: hstorePostgreSQL Extensions: ltreePostgreSQL Extensions: Secure Your Time-Series Data With pgcryptoPostgreSQL Extensions: pg_prewarmPostgreSQL Extensions: pgRoutingPostgreSQL Extensions: pg_stat_statementsPostgreSQL Extensions: Install pg_trgm for Data MatchingPostgreSQL Extensions: Turning PostgreSQL Into a Vector Database With pgvectorPostgreSQL Extensions: Database Testing With pgTAPPostgreSQL Extensions: PL/pgSQLPostgreSQL Extensions: Using PostGIS and Timescale for Advanced Geospatial InsightsPostgreSQL Extensions: Intro to uuid-ossp
Columnar Databases vs. Row-Oriented Databases: Which to Choose?Data Analytics vs. Real-Time Analytics: How to Pick Your Database (and Why It Should Be PostgreSQL)How to Choose a Real-Time Analytics DatabaseUnderstanding OLTPOLAP Workloads on PostgreSQL: A GuideHow to Choose an OLAP DatabasePostgreSQL as a Real-Time Analytics DatabaseWhat Is the Best Database for Real-Time AnalyticsHow to Build an IoT Pipeline for Real-Time Analytics in PostgreSQL
When Should You Use Full-Text Search vs. Vector Search?HNSW vs. DiskANNA Brief History of AI: How Did We Get Here, and What's Next?A Beginner’s Guide to Vector EmbeddingsPostgreSQL as a Vector Database: A Pgvector TutorialUsing Pgvector With PythonHow to Choose a Vector DatabaseVector Databases Are the Wrong AbstractionUnderstanding DiskANNA Guide to Cosine SimilarityStreaming DiskANN: How We Made PostgreSQL as Fast as Pinecone for Vector DataImplementing Cosine Similarity in PythonVector Database Basics: HNSWVector Database Options for AWSVector Store vs. Vector Database: Understanding the ConnectionPgvector vs. Pinecone: Vector Database Performance and Cost ComparisonHow to Build LLM Applications With Pgvector Vector Store in LangChainHow to Implement RAG With Amazon Bedrock and LangChainRetrieval-Augmented Generation With Claude Sonnet 3.5 and PgvectorRAG Is More Than Just Vector SearchPostgreSQL Hybrid Search Using Pgvector and CohereImplementing Filtered Semantic Search Using Pgvector and JavaScriptRefining Vector Search Queries With Time Filters in Pgvector: A TutorialUnderstanding Semantic SearchWhat Is Vector Search? Vector Search vs Semantic SearchText-to-SQL: A Developer’s Zero-to-Hero GuideNearest Neighbor Indexes: What Are IVFFlat Indexes in Pgvector and How Do They WorkBuilding an AI Image Gallery With OpenAI CLIP, Claude Sonnet 3.5, and Pgvector
Understanding IoT (Internet of Things)A Beginner’s Guide to IIoT and Industry 4.0Storing IoT Data: 8 Reasons Why You Should Use PostgreSQLMoving Past Legacy Systems: Data Historian vs. Time-Series DatabaseWhy You Should Use PostgreSQL for Industrial IoT DataHow to Choose an IoT DatabaseHow to Simulate a Basic IoT Sensor Dataset on PostgreSQLFrom Ingest to Insights in Milliseconds: Everactive's Tech Transformation With TimescaleHow Ndustrial Is Providing Fast Real-Time Queries and Safely Storing Client Data With 97 % CompressionHow Hopthru Powers Real-Time Transit Analytics From a 1 TB Table Migrating a Low-Code IoT Platform Storing 20M Records/DayHow United Manufacturing Hub Is Introducing Open Source to ManufacturingBuilding IoT Pipelines for Faster Analytics With IoT CoreVisualizing IoT Data at Scale With Hopara and TimescaleDB
What Is ClickHouse and How Does It Compare to PostgreSQL and TimescaleDB for Time Series?Timescale vs. Amazon RDS PostgreSQL: Up to 350x Faster Queries, 44 % Faster Ingest, 95 % Storage Savings for Time-Series DataWhat We Learned From Benchmarking Amazon Aurora PostgreSQL ServerlessTimescaleDB vs. Amazon Timestream: 6,000x Higher Inserts, 5-175x Faster Queries, 150-220x CheaperHow to Store Time-Series Data in MongoDB and Why That’s a Bad IdeaPostgreSQL + TimescaleDB: 1,000x Faster Queries, 90 % Data Compression, and Much MoreEye or the Tiger: Benchmarking Cassandra vs. TimescaleDB for Time-Series Data
Alternatives to RDSWhy Is RDS so Expensive? Understanding RDS Pricing and CostsEstimating RDS CostsHow to Migrate From AWS RDS for PostgreSQL to TimescaleAmazon Aurora vs. RDS: Understanding the Difference
5 InfluxDB Alternatives for Your Time-Series Data8 Reasons to Choose Timescale as Your InfluxDB Alternative InfluxQL, Flux, and SQL: Which Query Language Is Best? (With Cheatsheet)What InfluxDB Got WrongTimescaleDB vs. InfluxDB: Purpose Built Differently for Time-Series Data
5 Ways to Monitor Your PostgreSQL DatabaseHow to Migrate Your Data to Timescale (3 Ways)Postgres TOAST vs. Timescale CompressionBuilding Python Apps With PostgreSQL: A Developer's GuideData Visualization in PostgreSQL With Apache SupersetMore Time-Series Data Analysis, Fewer Lines of Code: Meet HyperfunctionsIs Postgres Partitioning Really That Hard? An Introduction To HypertablesPostgreSQL Materialized Views and Where to Find ThemTimescale Tips: Testing Your Chunk Size
Postgres cheat sheet
HomeTime series basicsPostgres basicsPostgres guidesPostgres best practicesPostgres extensionsPostgres for real-time analytics
Sections
PostgreSQL Extensions: amcheckPostgreSQL Extensions: Unlocking Multidimensional Points With Cube PostgreSQL Extensions: hstorePostgreSQL Extensions: ltreePostgreSQL Extensions: Secure Your Time-Series Data With pgcryptoPostgreSQL Extensions: pg_prewarmPostgreSQL Extensions: pgRoutingPostgreSQL Extensions: pg_stat_statementsPostgreSQL Extensions: Database Testing With pgTAPPostgreSQL Extensions: Install pg_trgm for Data MatchingPostgreSQL Extensions: PL/pgSQLPostgreSQL Extensions: Using PostGIS and Timescale for Advanced Geospatial InsightsPostgreSQL Extensions: Intro to uuid-osspPostgreSQL Extensions: Turning PostgreSQL Into a Vector Database With pgvector

Products

Time Series and Analytics AI and Vector Enterprise Plan Cloud Status Support Security Cloud Terms of Service

Learn

Documentation Blog Forum Tutorials Changelog Success Stories Time Series Database

Company

Contact Us Careers About Brand Community Code Of Conduct Events

Subscribe to the Tiger Data Newsletter

By submitting, you acknowledge Tiger Data's Privacy Policy

2025 (c) Timescale, Inc., d/b/a Tiger Data. All rights reserved.

Privacy preferences
LegalPrivacySitemap

Published at Mar 6, 2024

Vector Data

PostgreSQL Extensions: Turning PostgreSQL Into a Vector Database With pgvector

A visual representation of a vector, represented in a graph.

Written by Matvey Arye and Avthar Sewrathan

pgvector is a PostgreSQL extension that provides powerful functionalities for working with high-dimensional vectors. It introduces a dedicated data type, operators, and functions that enable efficient storage, manipulation, and analysis of vector data directly within the PostgreSQL database. If you're looking for a vector database, know that PostgreSQL is all you need. 

The Timescale Cloud platform includes two new open-source PostgreSQL extensions developed by the Timescale Team that complement pgvector: pgai, which brings more AI workflows to PostgreSQL; and pgvectorscale, which enables developers to build more scalable AI applications, with higher performance embedding search and cost-efficient storage. You can learn more about these two extensions in this article.

Let’s walk through the main features and use cases. We’ll also cover a few examples of analyzing relational and time-series data in TimescaleDB.

Understanding pgvector: Enabling Vector Operations

The pgvector extension is a powerful tool for storing, modifying, and querying vectors. This functionality enables applications such as similarity and semantic search, retrieval augmented generation, image search, recommendation systems, natural language processing (NLP), and computer vision. To kick off our pgvector exploration, let's take a look at vectors themselves.

What are vectors?

Vectors refer to mathematical representations of data points in multidimensional space. They are typically arrays or lists of numerical values that capture an entity's essential features or attributes. In machine learning and data science, vectors encode information in a way that enables efficient computation and analysis.

Vectors can represent words, sentences, or documents, allowing for semantic search where similar meanings are identified even if the exact words differ. This can be used to find documents with similar content or answer queries based on the context of the text. By converting visual data into vectors, vector databases (such as PostgreSQL with the pgvector extension) enable searching for similar images or videos. This can be useful in applications like facial recognition, object detection, and content-based image retrieval.

In time series and other types of data, vectors can represent normal behavior patterns, allowing the detection of anomalies by identifying vectors that significantly deviate from the norm.

Here are some of the key features and use cases of pgvector:

  • Vector storage: The pgvector extension lets you store high-dimensional vectors directly in PostgreSQL tables. It provides a dedicated data type for vector representation, allowing efficient storage and retrieval of vector data.

  • Similarity search: With pgvector, you can perform similarity searches based on vector similarity metrics such as cosine similarity or Euclidean distance. Searching for similar vectors facilitates applications like content-based recommendation systems, k nearest-neighbor search, and clustering.

  • Semantic search: Large language model (LLM) embeddings are a way to create vectors from other types of data (e.g., text, images, etc). These embeddings represent the meaning of the underlying data. Therefore, using similarity search to find similar vectors returns data with similar semantic meaning or content, effectively identifying data points that share common themes or topics regardless of their original format (text, images, etc).

  • Natural Language Processing (NLP) and text analysis: Vector embeddings are powerful as they capture the underlying meaning of text. Techniques like word or document embeddings enable you to capture the ideas expressed in the text. You can then perform vector-based operations like similarity search, clustering, or classification on textual data.

  • Computer vision: The pgvector extension can handle vector representations of images and enable similarity-based image search. You can convert images to vector representations using convolutional neural networks (CNN) or image embeddings. These capabilities allow you to perform content-based image retrieval, image similarity matching, object identification, and image clustering within the database.

image

Pgvector stores vectors that represent semantic meaning. Thus things that are meaningfully similar are “closer” together in the vector space. This allows people searching for SUVs to find cars and trucks instead of watermelons and apples, even though SUVs and trucks are different words.

Using Pgvector for Vector Data

By utilizing the pgvector extension, developers can efficiently store and query vector data within PostgreSQL, making it easier to build generative AI applications with LLMs, as well as AI applications that require similarity search, recommendation systems, NLP, and other tasks that involve working with vectors.

  • Installation: You can use pgvector on a cloud database service in Timescale or a self-hosted PostgreSQL instance:

    • Timescale’s cloud database instances come with pgvector pre-installed. So, all you have to do is run CREATE EXTENSION or connect to the PostgreSQL service with Timescale’s  Python client library. Get started with pgvector on Timescale.  

    • For self-hosting, you need to install the pgvector extension on your server. You can follow the pgvector installation instructions for Linux, MacOS, and Windows. Once installed, you can enable the extension in your database using the CREATE EXTENSION command: CREATE EXTENSION vector;

  • Vector data type: pgvector introduces a new data type called vector representing a high-dimensional vector. You can define vector-type columns in your database tables to store vector data. For example, you can have a table called documents with an embedding column of type vector to store LLM embeddings as vectors for each document. CREATE TABLE documents (  id BIGINT PRIMARY KEY GENERATED ALWAYS AS IDENTITY,  content TEXT,  author_id BIGINT, embedding VECTOR(1538) );

  • Indexing and vector search: pgvector provides indexing mechanisms optimized for approximate nearest neighbor search over vector data. You can create an index on a vector column using the CREATE INDEX command, specifying the hnsw index type and a vector_cosine_ops operator class. This enables fast similarity searches on vector data using the cosine distance similarity metric. You can then use the <=> operator to perform similarity searches in your queries: CREATE INDEX ON documents USING hnsw (embedding vector_cosine_ops); --find the closest 5 elements to a given query SELECT * FROM documents ORDER BY embedding <=> '[10.5, 11.0,...]' LIMIT 5;.

  • Vector functions: pgvector has a set of built-in functions to manipulate and perform operations on vector data. These functions allow you to calculate vector similarities, perform vector arithmetic, and more. For example, you can use the cosine_distance function to calculate the cosine similarity between two vectors.  Other useful functions are vector_norm() to get the Euclidean norm and vector_dims() to determine how many dimensions a vector contains.

  • Vector aggregates: pgvector has the avg(vector) and sum(vector) aggregate functions for calculating analytics on vectors.

  • Integration with other PostgreSQL features: pgvector seamlessly integrates with other features of PostgreSQL, such as transaction management, query optimization, and security. This integration enables you to leverage the power of PostgreSQL for complex data processing tasks. Joining pgvector data with other data types, like relational, time-series, and geospatial data, is a powerful way to enrich your vector queries’ data. As a simple example, you could return author information for documents found via similarity search:

WITH matching_docs as (   --find 5 closest matches   SELECT *    FROM documents    ORDER BY embedding <=> '[10.5, 11.0,...]'    LIMIT 5 ) SELECT d.content, a.first_name, a.last_name FROM matching_docs d  INNER JOIN author a ON (a.id = d.author_id).

Why Use Pgvector With Timescale?

Timescale is PostgreSQL++ engineered for time-series data, events, and analytics. It provides a robust foundation for storing, retrieving, and analyzing large volumes of time-series data thanks to its time-based aggregations, data retention policies, and features like hypertables and continuous aggregates.

Many real-world AI applications have retrieval or analytical requirements that include both vector data and a temporal aspect to similarity searches: embeddings of news, legal documents, and financial statements.

In such cases, users want to find similar documents within a specific time frame. Another common use is time-weighting, where users may not use a strict time filter but still prefer more recent or older data. For such workloads, Timescale can markedly enhance data ingestion and query speeds, thanks to hypertables—automatic time-based partitioning of tables. Timescale is especially good at optimizing queries that filter data based on time, enabling those queries to run more efficiently. 

How to Use Pgvector With Timescale

Step 1. Set up pgvector and timescaledb on a PostgreSQL instance. You can do this either with a cloud-hosted database on Timescale (recommended) or a self-hosted instance.

  • Timescale: The easiest way is with a database instance managed by Timescale, which comes with pgvector and timescaleDB already pre-installed. Get started for free with Timescale Cloud for 90 days. The only thing you need to do is execute CREATE EXTENSION vector;

  • Self-hosted: To install the TimescaleDB extension in your PostgreSQL database, you can follow the installation guide provided by TimescaleDB based on your PostgreSQL version. To install pgvector, you can follow the installation instructions for Linux, MacOS, and Windows. 

You then need to execute the following:

CREATE EXTENSION vector; CREATE EXTENSION timescaledb;

Step 2. Create a Timescale hypertable with a vector column: Create a regular table in your database that will serve as the basis for the hypertable. Convert the table into a hypertable using the create_hypertable function provided by TimescaleDB. Specify the time column and other relevant options. 

CREATE TABLE documents (   id BIGINT GENERATED ALWAYS AS IDENTITY,   created_at TIMESTAMPTZ,   content TEXT,   embedding VECTOR(1538) ); SELECT create_hypertable('documents', 'created_at');

Step 3. Insert vector data into the hypertable: Use regular SQL INSERT statements to insert data into the hypertable, including the vector data in the designated vector column. Ensure that the vector data is in the correct format expected by pgvector. You will need to get the vector representation from an embedding model (e.g., OpenAI text-embedding-3 models or, if you prefer, open-source sentence transformers). 

INSERT INTO documents (created_at, content,embedding) VALUES ('2023-06-01 00:00:00', 'the quick', '[1,2,3]'),       ('2023-06-02 00:00:00', 'brown fox', '[4,5,6]'),       ('2023-06-03 00:00:00', 'jumped over' '[7,8,9]');

Step 4. Querying and analyzing vector data. Use SQL queries to perform various operations on the vector data stored in the hypertable. You can combine TimescaleDB's time-series functions with pgvector's vector functions for analysis and querying.

Examples of queries you can perform include:

  • Similarity search: Find vectors similar to a given query vector using the <=> operator provided by pgvector. Combine that with filters on other columns, such as time.

  • Aggregation and grouping: Use TimescaleDB's time-series aggregation functions to aggregate vector data over time intervals or other dimensions.

  • Filtering and selection: Use regular SQL filters and conditions to select specific vector data based on certain criteria.

-- Similarity search SELECT * FROM documents ORDER BY data <=> '[1,2,3]'::vector LIMIT 5; -- Similarity search filtered by time SELECT * FROM documents WHERE time >= '2023-06-02 00:00:00' AND time < '2023-06-03 00:00:00' ORDER BY data <=> '[1,2,3]'::vector LIMIT 5; -- Aggregation and grouping, SELECT time_bucket('30 day', created_at) AS day, length(data) AS avg_data_length FROM sensor_data GROUP BY day ORDER BY day; -- Filtering and selection SELECT * FROM sensor_data WHERE time >= '2023-06-02 00:00:00' AND time < '2023-06-03 00:00:00';

Step 6. Optimization and performance. Depending on the scale and complexity of your data, consider optimizing the performance of your queries by creating indexes on the vector column using the CREATE INDEX command with the HNSW index type and the vector_cosine_ops operator class. Tune the configuration parameters of TimescaleDB and PostgreSQL based on your workload and resource requirements to achieve optimal performance.

CREATE INDEX ON documents USING hnsw (embedding vector_cosine_ops);

Next Steps

Want to learn more about pgvector and how to use it? Read the following resources:

  • Explore our documentation about working with pgvector for your AI application 

  • How to build with pgvector: PostgreSQL as a Vector Database: A Pgvector Tutorial

  • Focus on performance: How We Made PostgreSQL as Fast as Pinecone for Vector Data

  • PostgreSQL and Pgvector: Now Faster Than Pinecone, 75% Cheaper, and 100% Open Source

Get started with pgvector on a mature, production-ready cloud PostgreSQL platform: sign up for Timescale Cloud today. With Timescale Cloud, developers can access pgvector, pgvectorscale, and pgai—extensions that turn PostgreSQL into an easy-to-use and high-performance vector database, plus a fully managed cloud database experience.

On this page