TigerData logo
TigerData logo
  • Product

    Tiger Cloud

    Robust elastic cloud platform for startups and enterprises

    Agentic Postgres

    Postgres for Agents

    TimescaleDB

    Postgres for time-series, real-time analytics and events

  • Docs
  • Pricing

    Pricing

    Enterprise Tier

  • Developer Hub

    Changelog

    Benchmarks

    Blog

    Community

    Customer Stories

    Events

    Support

    Integrations

    Launch Hub

  • Company

    Contact us

    About

    Timescale

    Partners

    Security

    Careers

Log InTry for free
Home
AWS Time-Series Database: Understanding Your OptionsStationary Time-Series AnalysisThe Best Time-Series Databases ComparedTime-Series Analysis and Forecasting With Python Alternatives to TimescaleWhat Are Open-Source Time-Series Databases—Understanding Your OptionsWhy Consider Using PostgreSQL for Time-Series Data?Time-Series Analysis in RWhat Is Temporal Data?What Is a Time Series and How Is It Used?Is Your Data Time Series? Data Types Supported by PostgreSQL and TimescaleUnderstanding Database Workloads: Variable, Bursty, and Uniform PatternsHow to Work With Time Series in Python?Tools for Working With Time-Series Analysis in PythonGuide to Time-Series Analysis in PythonUnderstanding Autoregressive Time-Series ModelingCreating a Fast Time-Series Graph With Postgres Materialized Views
Understanding PostgreSQLOptimizing Your Database: A Deep Dive into PostgreSQL Data TypesUnderstanding FROM in PostgreSQL (With Examples)How to Address ‘Error: Could Not Resize Shared Memory Segment’ How to Install PostgreSQL on MacOSUnderstanding FILTER in PostgreSQL (With Examples)Understanding GROUP BY in PostgreSQL (With Examples)PostgreSQL Join Type TheoryA Guide to PostgreSQL ViewsStructured vs. Semi-Structured vs. Unstructured Data in PostgreSQLUnderstanding Foreign Keys in PostgreSQLUnderstanding PostgreSQL User-Defined FunctionsUnderstanding PostgreSQL's COALESCE FunctionUnderstanding SQL Aggregate FunctionsUsing PostgreSQL UPDATE With JOINHow to Install PostgreSQL on Linux5 Common Connection Errors in PostgreSQL and How to Solve ThemUnderstanding HAVING in PostgreSQL (With Examples)How to Fix No Partition of Relation Found for Row in Postgres DatabasesHow to Fix Transaction ID Wraparound ExhaustionUnderstanding LIMIT in PostgreSQL (With Examples)Understanding PostgreSQL FunctionsUnderstanding ORDER BY in PostgreSQL (With Examples)Understanding WINDOW in PostgreSQL (With Examples)Understanding PostgreSQL WITHIN GROUPPostgreSQL Mathematical Functions: Enhancing Coding EfficiencyUnderstanding DISTINCT in PostgreSQL (With Examples)Using PostgreSQL String Functions for Improved Data AnalysisData Processing With PostgreSQL Window FunctionsPostgreSQL Joins : A SummaryUnderstanding OFFSET in PostgreSQL (With Examples)Understanding PostgreSQL Date and Time FunctionsWhat Is Data Compression and How Does It Work?What Is Data Transformation, and Why Is It Important?Understanding the Postgres string_agg FunctionWhat Is a PostgreSQL Left Join? And a Right Join?Understanding PostgreSQL SELECTSelf-Hosted or Cloud Database? A Countryside Reflection on Infrastructure ChoicesUnderstanding ACID Compliance Understanding percentile_cont() and percentile_disc() in PostgreSQLUnderstanding PostgreSQL Conditional FunctionsUnderstanding PostgreSQL Array FunctionsWhat Characters Are Allowed in PostgreSQL Strings?Understanding WHERE in PostgreSQL (With Examples)What Is a PostgreSQL Full Outer Join?What Is a PostgreSQL Cross Join?What Is a PostgreSQL Inner Join?Data Partitioning: What It Is and Why It MattersStrategies for Improving Postgres JOIN PerformanceUnderstanding the Postgres extract() FunctionUnderstanding the rank() and dense_rank() Functions in PostgreSQL
Guide to PostgreSQL PerformanceHow to Reduce Bloat in Large PostgreSQL TablesDesigning Your Database Schema: Wide vs. Narrow Postgres TablesBest Practices for Time-Series Data Modeling: Single or Multiple Partitioned Table(s) a.k.a. Hypertables Best Practices for (Time-)Series Metadata Tables A Guide to Data Analysis on PostgreSQLA Guide to Scaling PostgreSQLGuide to PostgreSQL SecurityHandling Large Objects in PostgresHow to Query JSON Metadata in PostgreSQLHow to Query JSONB in PostgreSQLHow to Use PostgreSQL for Data TransformationOptimizing Array Queries With GIN Indexes in PostgreSQLPg_partman vs. Hypertables for Postgres PartitioningPostgreSQL Performance Tuning: Designing and Implementing Your Database SchemaPostgreSQL Performance Tuning: Key ParametersPostgreSQL Performance Tuning: Optimizing Database IndexesDetermining the Optimal Postgres Partition SizeNavigating Growing PostgreSQL Tables With Partitioning (and More)Top PostgreSQL Drivers for PythonWhen to Consider Postgres PartitioningGuide to PostgreSQL Database OperationsUnderstanding PostgreSQL TablespacesWhat Is Audit Logging and How to Enable It in PostgreSQLGuide to Postgres Data ManagementHow to Index JSONB Columns in PostgreSQLHow to Monitor and Optimize PostgreSQL Index PerformanceSQL/JSON Data Model and JSON in SQL: A PostgreSQL PerspectiveA Guide to pg_restore (and pg_restore Example)PostgreSQL Performance Tuning: How to Size Your DatabaseAn Intro to Data Modeling on PostgreSQLExplaining PostgreSQL EXPLAINWhat Is a PostgreSQL Temporary View?A PostgreSQL Database Replication GuideHow to Compute Standard Deviation With PostgreSQLHow PostgreSQL Data Aggregation WorksBuilding a Scalable DatabaseRecursive Query in SQL: What It Is, and How to Write OneGuide to PostgreSQL Database DesignHow to Use Psycopg2: The PostgreSQL Adapter for Python
Best Practices for Scaling PostgreSQLHow to Design Your PostgreSQL Database: Two Schema ExamplesHow to Handle High-Cardinality Data in PostgreSQLHow to Store Video in PostgreSQL Using BYTEABest Practices for PostgreSQL Database OperationsHow to Manage Your Data With Data Retention PoliciesBest Practices for PostgreSQL AggregationBest Practices for Postgres Database ReplicationHow to Use a Common Table Expression (CTE) in SQLBest Practices for Postgres Data ManagementBest Practices for Postgres PerformanceBest Practices for Postgres SecurityBest Practices for PostgreSQL Data AnalysisTesting Postgres Ingest: INSERT vs. Batch INSERT vs. COPYHow to Use PostgreSQL for Data Normalization
PostgreSQL Extensions: amcheckPostgreSQL Extensions: Unlocking Multidimensional Points With Cube PostgreSQL Extensions: hstorePostgreSQL Extensions: ltreePostgreSQL Extensions: Secure Your Time-Series Data With pgcryptoPostgreSQL Extensions: pg_prewarmPostgreSQL Extensions: pgRoutingPostgreSQL Extensions: pg_stat_statementsPostgreSQL Extensions: Install pg_trgm for Data MatchingPostgreSQL Extensions: Turning PostgreSQL Into a Vector Database With pgvectorPostgreSQL Extensions: Database Testing With pgTAPPostgreSQL Extensions: PL/pgSQLPostgreSQL Extensions: Using PostGIS and Timescale for Advanced Geospatial InsightsPostgreSQL Extensions: Intro to uuid-ossp
Columnar Databases vs. Row-Oriented Databases: Which to Choose?Data Analytics vs. Real-Time Analytics: How to Pick Your Database (and Why It Should Be PostgreSQL)How to Choose a Real-Time Analytics DatabaseUnderstanding OLTPOLAP Workloads on PostgreSQL: A GuideHow to Choose an OLAP DatabasePostgreSQL as a Real-Time Analytics DatabaseWhat Is the Best Database for Real-Time AnalyticsHow to Build an IoT Pipeline for Real-Time Analytics in PostgreSQL
When Should You Use Full-Text Search vs. Vector Search?HNSW vs. DiskANNA Brief History of AI: How Did We Get Here, and What's Next?A Beginner’s Guide to Vector EmbeddingsPostgreSQL as a Vector Database: A Pgvector TutorialUsing Pgvector With PythonHow to Choose a Vector DatabaseVector Databases Are the Wrong AbstractionUnderstanding DiskANNA Guide to Cosine SimilarityStreaming DiskANN: How We Made PostgreSQL as Fast as Pinecone for Vector DataImplementing Cosine Similarity in PythonVector Database Basics: HNSWVector Database Options for AWSVector Store vs. Vector Database: Understanding the ConnectionPgvector vs. Pinecone: Vector Database Performance and Cost ComparisonHow to Build LLM Applications With Pgvector Vector Store in LangChainHow to Implement RAG With Amazon Bedrock and LangChainRetrieval-Augmented Generation With Claude Sonnet 3.5 and PgvectorRAG Is More Than Just Vector SearchPostgreSQL Hybrid Search Using Pgvector and CohereImplementing Filtered Semantic Search Using Pgvector and JavaScriptRefining Vector Search Queries With Time Filters in Pgvector: A TutorialUnderstanding Semantic SearchWhat Is Vector Search? Vector Search vs Semantic SearchText-to-SQL: A Developer’s Zero-to-Hero GuideNearest Neighbor Indexes: What Are IVFFlat Indexes in Pgvector and How Do They WorkBuilding an AI Image Gallery With OpenAI CLIP, Claude Sonnet 3.5, and Pgvector
Understanding IoT (Internet of Things)A Beginner’s Guide to IIoT and Industry 4.0Storing IoT Data: 8 Reasons Why You Should Use PostgreSQLMoving Past Legacy Systems: Data Historian vs. Time-Series DatabaseWhy You Should Use PostgreSQL for Industrial IoT DataHow to Choose an IoT DatabaseHow to Simulate a Basic IoT Sensor Dataset on PostgreSQLFrom Ingest to Insights in Milliseconds: Everactive's Tech Transformation With TimescaleHow Ndustrial Is Providing Fast Real-Time Queries and Safely Storing Client Data With 97 % CompressionHow Hopthru Powers Real-Time Transit Analytics From a 1 TB Table Migrating a Low-Code IoT Platform Storing 20M Records/DayHow United Manufacturing Hub Is Introducing Open Source to ManufacturingBuilding IoT Pipelines for Faster Analytics With IoT CoreVisualizing IoT Data at Scale With Hopara and TimescaleDB
What Is ClickHouse and How Does It Compare to PostgreSQL and TimescaleDB for Time Series?Timescale vs. Amazon RDS PostgreSQL: Up to 350x Faster Queries, 44 % Faster Ingest, 95 % Storage Savings for Time-Series DataWhat We Learned From Benchmarking Amazon Aurora PostgreSQL ServerlessTimescaleDB vs. Amazon Timestream: 6,000x Higher Inserts, 5-175x Faster Queries, 150-220x CheaperHow to Store Time-Series Data in MongoDB and Why That’s a Bad IdeaPostgreSQL + TimescaleDB: 1,000x Faster Queries, 90 % Data Compression, and Much MoreEye or the Tiger: Benchmarking Cassandra vs. TimescaleDB for Time-Series Data
Alternatives to RDSWhy Is RDS so Expensive? Understanding RDS Pricing and CostsEstimating RDS CostsHow to Migrate From AWS RDS for PostgreSQL to TimescaleAmazon Aurora vs. RDS: Understanding the Difference
5 InfluxDB Alternatives for Your Time-Series Data8 Reasons to Choose Timescale as Your InfluxDB Alternative InfluxQL, Flux, and SQL: Which Query Language Is Best? (With Cheatsheet)What InfluxDB Got WrongTimescaleDB vs. InfluxDB: Purpose Built Differently for Time-Series Data
5 Ways to Monitor Your PostgreSQL DatabaseHow to Migrate Your Data to Timescale (3 Ways)Postgres TOAST vs. Timescale CompressionBuilding Python Apps With PostgreSQL: A Developer's GuideData Visualization in PostgreSQL With Apache SupersetMore Time-Series Data Analysis, Fewer Lines of Code: Meet HyperfunctionsIs Postgres Partitioning Really That Hard? An Introduction To HypertablesPostgreSQL Materialized Views and Where to Find ThemTimescale Tips: Testing Your Chunk Size
Postgres cheat sheet
HomeTime series basicsPostgres basicsPostgres guidesPostgres best practicesPostgres extensionsPostgres for real-time analytics
Sections

Performance

Guide to PostgreSQL Performance

Schema design

PostgreSQL Performance Tuning: Designing and Implementing Your Database Schema

Performance tuning

PostgreSQL Performance Tuning: Key ParametersPostgreSQL Performance Tuning: Optimizing Database IndexesHow to Reduce Bloat in Large PostgreSQL TablesPostgreSQL Performance Tuning: How to Size Your Database

Partitioning

Determining the Optimal Postgres Partition SizeNavigating Growing PostgreSQL Tables With Partitioning (and More)When to Consider Postgres PartitioningPg_partman vs. Hypertables for Postgres Partitioning

Database design and modeling

An Intro to Data Modeling on PostgreSQLDesigning Your Database Schema: Wide vs. Narrow Postgres TablesBest Practices for Time-Series Data Modeling: Single or Multiple Partitioned Table(s) a.k.a. Hypertables Best Practices for (Time-)Series Metadata Tables Guide to PostgreSQL Database Design

Database replication

A PostgreSQL Database Replication Guide

Data analysis

A Guide to Data Analysis on PostgreSQLHow to Compute Standard Deviation With PostgreSQL

Data transformation

How to Use PostgreSQL for Data Transformation

Data aggregation

How PostgreSQL Data Aggregation Works

Scaling postgres

A Guide to Scaling PostgreSQLBuilding a Scalable Database

Database security

Guide to PostgreSQL SecurityWhat Is Audit Logging and How to Enable It in PostgreSQL

Data management

Understanding PostgreSQL TablespacesGuide to Postgres Data ManagementHandling Large Objects in Postgres

Database operations

Guide to PostgreSQL Database Operations

JSON

How to Query JSON Metadata in PostgreSQLHow to Query JSONB in PostgreSQLHow to Index JSONB Columns in PostgreSQLSQL/JSON Data Model and JSON in SQL: A PostgreSQL Perspective

Query optimization

Explaining PostgreSQL EXPLAINWhat Is a PostgreSQL Temporary View?Optimizing Array Queries With GIN Indexes in PostgreSQLRecursive Query in SQL: What It Is, and How to Write One

Database tools and libraries

How to Use Psycopg2: The PostgreSQL Adapter for PythonTop PostgreSQL Drivers for Python

Database indexes

How to Monitor and Optimize PostgreSQL Index Performance

Database backups and restore

A Guide to pg_restore (and pg_restore Example)

Products

Time Series and Analytics AI and Vector Enterprise Plan Cloud Status Support Security Cloud Terms of Service

Learn

Documentation Blog Forum Tutorials Changelog Success Stories Time Series Database

Company

Contact Us Careers About Brand Community Code Of Conduct Events

Subscribe to the Tiger Data Newsletter

By submitting, you acknowledge Tiger Data's Privacy Policy

2025 (c) Timescale, Inc., d/b/a Tiger Data. All rights reserved.

Privacy preferences
LegalPrivacySitemap

Published at Jan 3, 2024

Database Storage

Understanding PostgreSQL Tablespaces

Written by Dylan Paulus

Tablespaces are a PostgreSQL feature that gets easily overlooked but can provide substantial speed improvements and cost-saving potential. As our database grows, tablespaces become a powerful tool in our toolbelt.

Learn how to use PostgreSQL tablespaces and how to dodge their complexity with a convenient multi-tiered storage solution to benefit from fast query performance and affordable scalability in one go.

What Are PostgreSQL Tablespaces?

A tablespace is a disk location where the physical data files of database objects (tables, indexes, sequences, etc.) are stored. Think of tablespaces as a mapping between a name and a directory on your server/computer. PostgreSQL comes out of the box with two tablespaces:

  • pg_default is the default tablespace used by PostgreSQL when you create a table.

    • pg_default maps to the /data directory in your PostgreSQL directory (defined by $PGDATA).

  • pg_global is used by PostgreSQL internals to store system-related objects.

What's the difference between a tablespace and a schema?

Schemas allow us to organize database objects into groups or "buckets" to make managing these objects easier. Schemas are a concept or logical representation. Tablespaces, on the other hand, represent where the database objects physically exist on a hard drive. These are the files PostgreSQL creates when a table is created, or data is inserted.

What to Use PostgreSQL Tablespaces For

When it comes to PostgreSQL tablespaces, there are two main use cases that we can benefit from.

First, tablespaces are a strategic tool to prevent storage from filling up. As your disks become full, you can assign tables or partitions to different disk locations to avoid database outages. It's important to note that only new data will be stored on the new disk, while the existing data continues residing on the old disk.

Secondly, and perhaps most importantly, tablespaces are a crucial tool in optimizing your PostgreSQL databases' performance and monetary cost. This is done by storing frequently accessed data on high-speed, expensive disks while moving less frequently accessed data to more cost-effective, slower disks. For instance, using time-series data, you could keep the most recent three days of data on a fast disk. Meanwhile, historical and reporting data older than three days could be moved to inexpensive, cold storage.

How to Use Tablespaces in PostgreSQL

Creating tablespaces is fairly straightforward but can be tricky to maintain. To create a new tablespace, you have to be logged in as a database superuser, and the directory location you want to store data needs to be created. To create a tablespace, run CREATE TABLESPACE with a name and location where the data will live.

CREATE TABLESPACE my_tablespace LOCATION '/tmp/pgdata';

Once created, we can supply the name of the tablespace to a database object to have it stored in the path defined by the tablespace. Let's explore how we would do this with a few examples.

Using tablespaces with create database

CREATE DATABASE payments TABLESPACE my_tablespace;

Using tablespaces is a great way to physically separate databases in PostgreSQL. Providing a tablespace while creating a database will automatically put every object under that database in the given tablespace. Using the example above, any table, index, materialized view, or other database object created in the payments database will be physically located in /tmp/pgdata by default. 

Using tablespaces with create table

CREATE TABLE line_items ( id      SERIAL PRIMARY KEY, name    TEXT NOT NULL, price   DECIMAL NOT NULL )  TABLESPACE my_tablespace;

We can also define which tablespace an individual table will belong to. Not including the tablespace while creating a table will have it default to the database's tablespace. 

By explicitly defining the tablespace for a table we can place its data in a different location than the database's tablespace. For example, if we ran the following query in the payments database (remember, payments is in the my_tablespace tablespace):

CREATE TABLE line_items ( id      SERIAL PRIMARY KEY, name    TEXT NOT NULL, price   DECIMAL NOT NULL )  TABLESPACE pg_default;

The physical data for line_items would be stored in pg_default (/data), not /tmp/pgdata.

How do I move a table to another tablespace?

Once a tablespace is defined for a table, it's not set in stone. Changing tablespaces lets us avoid failures when a disk fills up. When we notice a disk getting full, change the table's tablespace to an empty disk, and any future data will be written to that new disk. To update a table's tablespace, run the ALTER query:

ALTER TABLE line_items SET TABLESPACE pg_default; ALTER TABLE line_items SET TABLESPACE my_tablespace;

How do I drop a tablespace?

Once we decide we no longer need a tablespace, we may want to delete it. All the database objects must be removed from the tablespace before PostgreSQL will allow us to drop it. With the objects deleted, we can drop a tablespace by running:

DROP TABLESPACE [tablespace_name];

Using tablespaces with hypertables

Like tables, we can configure tablespaces per hypertable (a TimescaleDB feature that works just like PostgreSQL tables but automatically partitions the data, speeding up performance) and even move chunks between tablespaces. Moving chunks between tablespaces is especially useful in keeping historical time-series data on a slower, less accessed disk, freeing up recent, relevant data for faster access.

Let's see this in action by creating two tablespaces and a hypertable.

Note: Make sure /tmp/pgdata-fast and /tmp/pgdata directories exist before running the following CREATE TABLESPACE commands.

CREATE TABLESPACE fast_disk LOCATION '/tmp/pgdata-fast'; CREATE TABLESPACE slow_disk LOCATION '/tmp/pgdata'; CREATE TABLE measurements (       time    TIMESTAMPTZ NOT NULL, data    DECIMAL NOT NULL ) TABLESPACE fast_disk; SELECT create_hypertable('measurements', by_range('time'));

A few things are happening here. We create two tablespaces using arbitrary locations to mimic a fast and slow disk. Next, we create a measurements table, having it default to the fast_disk tablespace. Defining a tablespace isn't necessary for hypertables, but I want to highlight that any tablespace on a table carries over to the hypertable. Alternatively, if the table does not explicitly define a tablespace, then the hypertable will default to the database's default tablespace.

A big difference between using tablespaces on tables vs. hypertables is that hypertables can have multiple tablespaces attached to them. TimescaleDB will distribute chunks between all the tablespaces given on a hypertable. To remove or add a tablespace on a hypertable, use the detach_tablespace() and attach_tablespace(), respectively.

Let's add slow_disk as an additional tablespace of measurements.

SELECT attach_tablespace('slow_disk', 'measurements');

image

To show what tablespaces are on a given hypertable, use the show_tablespaces([hyper_table]) function.

SELECT * FROM show_tablespaces('measurements');

We want to keep our hypertable fast. Let's remove the slow_disk tablespace by running detach_tablespace().

SELECT detach_tablespace('slow_disk', 'measurements');

image

Moving chunks between tablespaces

Being able to attach and detach tablespaces from hypertables is great. But, to really optimize time-series data access, we need the ability to move chunks between tablespaces because data partitioning happens at the chunk level. Unlike hypertables, chunks can only belong to a single tablespace. We can use the move_chunk() function to move chunks between tablespaces. First, before we can see move_chunk() in action, we need to add data into measurements to create a few chunks in the hypertable.

INSERT INTO measurements (time, data) SELECT     time_hour,     0.25 FROM generate_series(     TIMESTAMPTZ '2023-11-01',      TIMESTAMPTZ '2023-11-07',      INTERVAL '1 hour' ) as time_hour;

Then, use show_chunks to view the chunks generated.

SELECT show_chunks('measurements');

image

Assume _timescaledb_internal._hyper_1_1_chunk is no longer used in our application, but we want to keep this chunk around for historical context. It's time to move _hyper_1_1_chunk to a slower disk. We can move it to the slow_disk tablespace by running move_chunk().

SELECT move_chunk( chunk => '_timescaledb_internal._hyper_1_1_chunk', destination_tablespace => 'slower_disk',  index_destination_tablespace => 'slower_disk',  reorder_index => 'measurements_time_idx' );

Wait, what? This is a lot, so let's break it down. When moving a chunk between tablespaces, move_chunk acts like a combination of the PostgreSQL CLUSTER and PostgreSQL ALTER TABLE...SET TABLESPACE commands. To preserve the index of a chunk, we need to tell move_chunk which index the chunk is using to partition reorder_index and the destination to store the index on disk index_destination_tablespace.

To figure out which index to use, run \d [table_name] while connected to your database through the psql cli.

image

With the _hyper_1_1_chunk chunk moved to slow_disk, we can double-check which tablespace a chunk is using by querying the timescaledb_information.chunks table.

SELECT  hypertable_name,  chunk_name,  chunk_tablespace  FROM timescaledb_information.chunks  WHERE hypertable_name = 'measurements';

image

To automatically move chunks between tablespaces, we'd need to set up a cron to periodically evaluate what chunks need to move tablespaces, then run move_chunks(). Doing this can be error-prone, cumbersome, and not always perfect. But of course, Timescale has a solution!

Timescale Tiered Storage

Tiered Storage is a seamless and quick solution for automating data management. With Tiered Storage, data inserted into your Timescale cloud database first gets written to high-performance storage. Over time, as that data becomes rarely accessed, it gets moved into a low-cost storage tier with user intervention—keeping costs down while optimizing for fast queries and high ingests.

Tiering the data in an existing hypertable is painless and low shift. Run the add_tiering_policy() function giving a hypertable and a threshold when to move data to a lower tier.

SELECT add_tiering_policy('measurements', INTERVAL '7 days');

That's it! A data tiering policy for the measurements hypertable is now set up. Any data older than seven days will get automatically moved to low-cost storage. 

We have full control of our data using Timescale's Tiered Storage backend. If we find that, in the future, we need to move data out of low-cost storage back to high-performance storage, we can untier any chunk.

CALL untier_chunk('[chunk_name]');

Check out our documentation for more information on using Tiered Storage.

Conclusion

Tablespaces are not only a tool to manage disk usage but can also keep your databases running fast and healthy. In this article, we looked at how to create and assign tablespaces in PostgreSQL, take advantage of tablespaces in hypertables and chunks to further optimize data access in TimescaleDB, and finally, how we can use Tiered Storage to trivialize managing tablespaces in the cloud—saving you cost and performance.

Create a Timescale account for free and start experimenting with tablespaces and Tiered Storage yourself.

On this page